Passen nicht alle Paletten in den LKW oder fährt der LKW nur halbvoll vom Hof, dann sind oft die entsprechenden Stammdaten nicht richtig gepflegt. Fehlerfreie Datensätze sind unabdinglich für reibungslose Prozessabläufe, so auch in der Logistik.

Wie aber sollen Unternehmen mit Daten-Qualitätsproblemen umgehen, für die sich keine exakten Regeln definieren lassen? Eine innovative Herangehensweise an dieses altbekannte Problem bietet der Einsatz von künstlicher Intelligenz (KI) bzw. maschinellem Lernen.

Maschinelles Lernen: Aus Daten Erkenntnis generieren

Maschinelles Lernen ist ein Teilbereich des aktuellen Forschungsthemas künstlicher Intelligenz. Machine-Learning-Algorithmen sind in der Lage, auf Basis vorhandener Daten Muster und Gesetzmäßigkeiten zu entdecken. Aus diesen Erkenntnissen können Lösungen, quasi neues Wissen aus bisher unbekannten Daten generiert werden.

Um einen Algorithmus initial aufzusetzen, wird dieser mit Beispieldaten „trainiert“. Diese Daten sollten fehlerfrei und in ausreichender Anzahl vorhanden sein. Nach dem abgeschlossenen Training kann der Algorithmus die erkannten Muster auf neuen Daten suchen und eine entsprechende Lösung vorschlagen.

Initiale Datenanalyse: Wie gut sind Ihre Daten wirklich?

Wendet man maschinelles Lernen auf das Problem potentiell fehlerhafter Logistik-Daten an, dann lässt sich eine sogenannte Daten-Plausibilität-Überprüfung realisieren, die nicht auf Basis von festen Regeln arbeitet. Beispielsweise wird ein Algorithmus angelernt zu überprüfen, ob die Kombination von Höhe, Länge, Breite plausibel ist. Ähnlich wie auch eine menschliche Überprüfung stattfinden würde.

Von Falsch zu Richtig: zukünftig keine fehlerhaften Daten mehr eingeben

Bevor ein Algorithmus angelernt wird, werden statistische Verfahren benutzt, um fehlerhafte Produkte zu finden und menschlich zu korrigieren. Dies verhindert, dass der Algorithmus inkorrekte Daten lernt.

Der korrigierte Datensatz dient als Grundlage für den Algorithmus, der eigenständig Regeln und Abhängigkeiten findet, bspw. das Verhältnis zwischen Höhe, Länge, Breite mit Volumen oder Gewicht.

Fortan werden alle neuen Produkteinträge mit diesem Algorithmus überprüft. Treffen alle bestehenden Regeln zu, gibt es keine Bedenken bei diesem neuen Produkt. Ist eine Regel nicht erfüllt, erhält die Nutzerin eine Warnung, die eingegebenen Werte erneut zu überprüfen.

Langfristig die Qualität verbessern

Profitieren auch Sie vom Einsatz innovativer Machine-Learning-Technologie in Ihrem SAP System. Wir unterstützen Sie gerne dabei, angefangen mit initialer Prüfung der Datenqualität, Vorbereitung durch Trainieren des Machine-Learning-Modells sowie die Integration in Ihr SAP MDG System. Langfristig verbessert sich so die Datenqualität, indem fehlerhafte Einträge verhindert werden. Dafür bieten wir regelmäßige Aktualisierungen des Algorithmus, sodass auch neue Produktkategorien erfasst werden.

Die Community für Data Driven Leaders

Die Community für Data Driven Leaders vernetzt Branchenexperten und hält Sie mit exklusiven Einblicken auf dem Laufenden.

Werden Sie Teil der Data Driven Leaders

Empfohlene Artikel

Supply Chain Management

Lebensmitteleinzelhandel: der Weg zur Supply Chain der Zukunft

Disruptive Marktentwicklungen setzen die Lieferketten im Lebensmitteleinzelhandel unter Druck. In einer Blogserie werden wir diese Trends untersuchen, ihre Auswirkungen auf die …

weiterlesen
Logistics

Beeinflusst AI den strategischen Standort von Shared Service Centern?

Inwieweit wird Artificial Intelligence die strategische Frage nach dem geografischen Standort von Shared Service Centern beeinflussen? Shared Service Center sorgen fü…

weiterlesen
Logistics

Das 9. „R“ der Logistik – Strategieumsetzung

Mit zunehmendem Grad an vertikaler Integration werden die acht Rs der Logistik immer wichtiger. Neben den richtigen („R“ steht für …

weiterlesen

Denken Sie Ihre Value Chain neu mit uns

Kontaktieren Sie uns